CRM Magic or Smoke and Mirrors?

Old stuff is commonly stamped as long in the tooth, antediluvian – to be face-lifted, remade, or simply discarded after years of service.

Amazingly in the CRM world, some things that never even get full adoption or wide-spread use, still get per annum marketing make overs – no doubt aimed at luring buyers with brand new fairytale names and future promises.   Take for instance CDPs (Customer Data Platforms), modules offered by most of the CRM vendors.

Is it truly CRM magic or just hocus pocus?

Genie, the latest announcement by Salesforce, is a recent example of this trend and hard to size up.  Is it just a new data model or worse, just a fancy new name for an existing CDP product?  Or is it really a new & shiny customer data platform?  Or is it something different?  Perhaps a bundle of existing offerings with some minor enhancements.  As always, time will tell.  When the smoke clears, will we realize there’s nothing new and exciting available today – but instead just new promises. 

Salesforce isn’t the only vendor guilty of polishing old code, announcing ahead of the curve, or re-packaging existing product with new marketing wrappers and new names.  Many other web analytics, content, and data management vendors are constantly renaming products to jump on messaging bandwagons to announce the next magic potion.

Reading the headlines, here’s the takeaways so far on Salesforce Genie:

  • Salesforce suggests it’s closer to assembling and updating customer profiles in real-time now, but it’s not real-time.   Commonly accepted definitions of real-time are that processing happens in under 1 second.  But at Dreamforce we heard, “real-time is 5 min ago not 5 days ago.”  
  • The Marketing Cloud Genie seems to be a bundle of the Salesforce CDP, Personalization (Evergage), Engagement (Journey Builder and Email Studio), and Intelligence (Datorama).
  • There is a direct integration with Snowflake which sounds interesting but unfortunately not much detail was provided.
  • Amazon Sagemaker can directly access Genie data.  This could benefit data scientists working in this tooling, to get data prepped easier and faster for model building purposes.
  • Einstein powered AI-content selection was discussed.  Is Einstein considered part of Genie?  Not clear.  This allows personalizing the content selected based on a consumer’s location & associated weather data.    
  • It’s not clear how Salesforce will price Genie.
  • Einstein Engagement Frequency Reporting with “What If” analysis – this is depth of file analytics (how many targets to include in campaigns) and fatigue reporting – the announcement of a “what if” capability allows for some basic scenarios to be run.
  • Salesforce users can now bulk import customers (called contacts in Salesforce lingo) into Salesforce Engagement.  
  • Various enhancements to Salesforce Intelligence (Datorama) were announced, including a control center for data governance.

All of this, including the last two points beg a major question.  How many CDPs does Salesforce have now?  By one count there may be as many as four:

  1. Salesforce CDP (formerly called Salesforce 360)
  2. Marketing Cloud Engagement Datastore
  3. Marketing Intelligence Datastore
  4. Genie (which by some accounts, may include an upgrade of some of the Evergage CDP capabilities)

Some tips:

Instead of banking on promises and new names, focus on outcomes and what can be achieved with proven solutions.  Chasing wet behind the ears data management technology, or worse vaporware, can be expensive, frustrating, and fraught with tremendous opportunity costs.  We should have learned by now that data management technologies in and of themselves won’t return value.  Build it and they will come doesn’t work.  You need good data, but it alone has no value until you activate it.  And you’ll need the right decision engine tightly integrated with it to get value.

Instead of the marketing headlines and superficial news stories, look for product documentation and actual training materials that describe the actual GA product, how it’s configured, and what features it contains.

Look for real customer accounts of using the software and the value they got in return.

Read crowd review sites, such as Trust Radius, G2, and Gartner Peer Insights to get real user feedback.

In summary, buy real working products not promises.

CDPs Then & Now – The Customer ID (Identification & Data) Problem

In November 2019 perhaps you caught this article: “To CDP or NOT – 3 tips – then you decide.”  The main takeaway – the CDP space is a quasi-market with a mixed bag of firms coming from different lineages and different levels of capability, maturity, and focus.  The conclusion: buyer beware and standby.

That was BC – Before COVID-19.  Since then, what hasn’t changed about the world?  And like everything in 2020, the CDP market was not immune to upheaval.  And although the basic premise for adding a CDP into the Martech stack is still the same:

  1. Help resolve customer identity
  2. Rationalize and manage customer data
  3. Make that data accessible to other systems

…what’s changed are the vendors involved, and their core and extended capabilities, which are substantially different nearly three years later.

Most markets appear as nebulous categories, and the CDP market was no exception.  But as buyers and vendors evolve, dust settles, and the picture becomes clearer.  Still, two important aspects of what a CDP should supply loom large and are worthy of close inspection.  Namely, providing customer recognition/identity management and distilling the right (and righteous) customer data into meaningful insights.

Considering those key features, let’s explore a few of the big changes since November 2019:

  • The huge marketing cloud players entered the market:  Adobe, Oracle, and Salesforce
  • More consolidation took place, with small CDPs swallowed up by an interesting mix of companies
  • Perilous new milestones reached for third-party cookies and stealth consumer tracking

Stick with me.   You’ll get insight into these three changes, three tips, and some final thoughts.

Marketing Cloud Titans Enter CDP Fray

Adobe Real-Time CDP

In early 2020, Adobe entered the CDP ring with Adobe Experience Platform’s Real-Time CDP, promising to “Combine all individual and company data — internal and external, known and unknown — into a standard taxonomy that can be activated in real-time.”[i]  A tall order indeed.

Although certainly set up to collect digital data by way of Adobe Launch & Analytics, Adobe’s aggressive mission to combine “all data” for B2C and B2B across known and unknown, lacks focus and gives reason for pause.

Adobe has fared well in providing digital marketing data & support for early-stage customer journey activity, with its first-generation web analytics and tag management (by way of its Omniture acquisition over 10 years ago), followed by its subsequent purchases of Demdex (third-party cookie data-management platform), and marketing automation firms like Neolane (B2C) and Marketo (B2B).  Yet with the third-party cookie tracking foundation crumbling as the final browsers outlaw it, they’ve had to look for another way.  So far, that appears to be using CNAME record cloaking, which in effect is just a clever DNS hack to circumvent gaining explicit permission to track. 

The ultimate jury and judge (the consumer) may not approve of this tactic (once they discover it).  Further, with a shortage of direct access to first-party behavior data, customer analytics depth, and channel breadth, Adobe still struggles to develop deep customer understanding and natively/performantly enrich its customer profile.  And other than collecting raw digital data in real-time, not much else about Adobe’s CDP is real-time and insightful.  Adobe nonetheless plows forward with bold statements of real-time and unity that potential CDP buyers should take with a grain of salt.

As a major marketing cloud player, Adobe will eventually amass more digital data, improve its signal detection, and get more apt at activating those signals and audiences in acceptable ways.   But for now, buyers should beware of completeness claims, tracking practices, data feeds and speeds, and external integration features.

Oracle’s CDP

Interestingly, googling with the term “Oracle CDP” yields a top result pointing to an Oracle whitepaper-like webpage espousing that a “customer data platform (CDP) is software that collects and unifies first-party customer data.” [ii]  So far so good.  

Reading on, the article mentions “first-party data” 11 times, never mentioning third-party data until the final punchline at the end, where the author claims that a Customer Intelligence Platform (CIP) is different from a CDP because it “incorporates anonymous, third-party data as well as first-party data.”    It’s here that Oracle tries to differentiate its CDP, Oracle Unity, from all others.  That differentiation attempt falls flat, and is oddly fascinating on three fronts:

  • Oracle has almost no choice but to take this approach, since it spent $400m on BlueKai in 2014, one of the world’s leading third-party data trackers.  As such, Oracle wants the buyer to believe they get a premium from contracting with a CDP that can merge third-party data.
  • Oracle claims it’s not really a CDP, but instead differentiates as a Customer Intelligence Platform (CIP), and not just for marketing.   Amusingly, in my June 2019 article I advocate for a CIP – The Final 4: MarTech Platforms and Ecosystems –  yet with the middle letter short for insights about individuals attainted from first-party data, not general intelligence.  Very different CIPs indeed.
  • The reason for the demise of the cookie-based cottage industry and third-party data is that it was built on a house of cookie cards, gathering and brokering consumers’ data without explicit permission, and inherently unreliable as a good proxy for consumer intent & behavior – one of the major tenants for a CDP.

Given this, be careful with Oracle’s CDP (or CIP) solution, with its bias toward third-party data, paid media channels, and early-stage acquisition use cases.  Purchasing one means buying into the value of third-party data and acquisition use cases, while not solving for data-driven, real-time 1-1 customer engagement use cases, deeper into the relationship, on owned channels.

Salesforce’s CDP

Late in 2019, as the virus was unknowingly spreading, Salesforce began spreading the news about its new Customer 360 Truth, claiming it had a product with “a new set of data and identity services that enable companies to build a single source of truth across all of their customer relationships.“ [iii]  And although at the time they didn’t call it a CDP, they were quacking as if it were one, and funny enough in April 2021 relaunched it as a CDP. [iv]

In 2019, in classic Salesforce fashion, they announced a not-ready-for-prime-time CDP-like product, C360, with pages of fine print.  Like a theater stage with a kitchen viewed from afar, it might have appeared fully equipped.  However, on closer inspection, some of the supposed appliances were but props with no cords to plug in, no motor to run them.

And even on re-launch in May 2021, they simply slapped existing separate products such as Tableau and Mulesoft onto the wrapping paper of the Salesforce CDP.  Further, like most CDPs (except ones that come from the web analytics space, such as Tealium and Celebrus) everything is based on creating customer segments and sharing those in less than real-time for activation instead of taking an individual personalization approach and sharing in real-time.

Thus, rip off the cartoon marketing wrappers, and look inside the box and inspect all the parts for function and fit before buying.

CDP Market Consolidation

In addition to the entrance of the above big three, Microsoft and SAP also announced CDP solutions.  Before November 2019, 18 acquisitions took place. Since November 2019, 8 more further transformed the CDP landscape:

  • IgnitionOne bought by Zeta Global – December 2019
  • AgilOne bought by Acquia – December 2019
  • Evergage bought by Salesforce – February 2020
  • Segment bought by Twilio – October 2020
  • Exponea bought by Bloomreach – January 2021
  • BlueVenn bought by Upland Software – March 2021
  • Boxever bought by Sitecore – March 2021
  • Zaius bought by Optimizely/Episerver – March 2021

What’s the takeaway?  Dust is still flying in this market.  And if you are betting on one of the 100+ vendors calling themselves a CDP to plug key gaps, especially in foundational areas such as identity & data management, consider whether their future is secure, and they’ll continue to go in the same direction, as it could impact yours.

The Calamitous Cookie Crisis – Customer Identification and Tracking

In January 2020, Google announced plans to end support for third-party cookies in Chrome in two years.  Late-breaking news is that in June 2021, Google said they will delay until the middle of 2023.  But cookiepocalypse is still coming.  With less than two years until that deadline, ad-tech companies, and ad agencies alike are scrambling to find workarounds for web behavior identification and tracking. 

Case in point – The Trade Desk and ad agency Publicis (who bought the database marketing firm Epsilon in 2019) are teaming on a digital advertising solution built around the new open-source identification scheme called Unified ID 2.0.  Initially developed by The Trade Desk, Unified ID 2.0 obfuscates a consumer’s email address, using a technical hashing technique to protect consumer privacy.[v]  

As of May 2021, The Trade Desk says it already has over 170 million profiles obtained with consent.  But long-term success depends on an even bigger pool of email addresses (e.g., more consumers opting in than opting out), and that means enough publishers adopting the standard, and obtaining consumer consent.  Since history has shown consumers will opt-in without reading terms and conditions, it may have hope, especially in places like the US and Asia, so stay tuned.  My advice – read before you click, as it’s essentially agreeing to be a target of every participating company. 

In addition, SAP and Akamai bought traditional sign-on companies Gigya and Janrain respectively, going the route of obtaining social sign-on solutions to gain access to customer identification and tracking capabilities.  And although Okta, who acquired rival Auth0 in May 2021, hasn’t called itself a CDP (yet), they are a force in the customer authentication and identity space.  

What does this have to do with CDPs?   Well many ad-tech companies, formerly calling themselves data-management platforms (DMPs) during the third-party cookie era, now claim to be CDPs.  Keep in mind, however, they built their solutions to manage third-party data and cookies and to target based on these spurious methods, and not on first-party data and known identities.  Ultimately, without a strong first-party data foundation, those DMP CDPs have a limited shelf-life and are poor investments.

CDP Selection Tips

Tip #1 – Study their specialty

Keep in mind that all vendors started with a core offering.  That tells a lot about what they’re probably good at.  When interviewing a job applicant, there’s a reason why we inspect someone’s background (work history, school they attended), as it gives insight into how they’ve honed their craft. 

No vendor (not even the big ones) will be able to supply best-of-breed capabilities to handle all stages of a journey, from the anonymous browsing steps to phases deeper in an authenticated relationship.  Nor will they be able to major in more than a handful of the dozen or so capabilities the collective CDP market covers:

  1. Data collection
  2. ETL – Extract, transform, load (including cleansing and householding)
  3. Identity stitching and management
  4. Real-time data insights
  5. Predictive analytics
  6. Recommendations and decisioning engines
  7. Journey (cross-channel) orchestration
  8. Owned channel marketing automation and e-message services
  9. Digital advertising
  10. General (business intelligence) customer data activation
  11. Internal query, reporting, dashboards, and attribution analysis

Most native CDPs came up focusing on one or more of the first 3.  And with no official CDP magic quadrants or waves by major analyst firms, many others have conveniently slapped the CDP label on themselves. So, decide where you have the biggest capability gaps and needs along the customer journey, where a data-driven solution will drive better outcomes and more value, find matches, and select accordingly.  Also, if gaps exist mainly in areas 4 – 10, look beyond the CDP market, as there are a multitude of vendors not calling themselves CDPs that major in these areas.

Tip #2 – Demand real-time response times

When considering the claim of “real-time,” (which is a critical capability to take CX to another level) look beyond single components, such as the speed of data collection, or placing data onto a customer profile record.  Instead, inspect the entire data/event -> insights -> decision journey and ask:

  • “Can that entire trip be accomplished in an SLA (Service Level Agreement) under 200 milliseconds?”
  • “Can the vendor do that at scale, for millions of customers and 1000’s of interactions per second?”

Why 200 milliseconds you ask?  Because as a consumer, do you want websites you use to be slower?   As a person responsible for the website, will you allow anything new to slow down page loads?   I bet the answer to both is no.   So if your new CDP is going to play a role in providing better real-time digital experiences, it better not take up much of the two-tenths of a second response time budget.

Tip #3 – Demand real-time insights

Look for a CDP that can supply real-time data insights, with a library of these for your industry.  This looms so largely in reaping unfair benefits from a CDP investment because not many CDPs do this, and it’s how you’ll move the needle on customer experience.  Can you do this today?  Can you find customer behavior diamonds in the deep mines of digital data, surface it, polish it, and immediately pass it to a customer decision hub?  Not many can.

For instance, detecting consumers’ heightened but fleeting interest in specific products, refining that raw data into curated signals, passing them to a decision engine in real-time, so it can trigger special and immediate actions.  Very few CDPs can do these things – in that order – fast enough.  An example: a consumer on a banking website, researching mortgages [again] in the final stage of selecting a mortgage provider. 

So, look for a CDP that can solve this problem. There aren’t many.  You’ll add something special and unique that few can do.  Celebrus is one solving this exact problem:  collecting the right behavior data, making sense of it in the form of a signal library, passing those signals to a decision authority in real-time, so it can act in the moment.

Conclusion

Big is not always better, but it’s always bigger.  And although selecting a large outfit as a CDP provider gives some assurance that the solution will be around in a few years, that doesn’t necessarily equate to the best CDP solution.  Doing business with a mega-CDP vendor rarely means faster, more seamless interfaces and deep expertise.  On the contrary, expect bigger integration costs, longer wait times, custom work, and more patience required.  And if selecting a big CDP is for “one throat to choke,” try finding that elusive throat inside a tech behemoth with 50,000 employees who have swallowed up 20 companies on the way to building their marketing stack and CDP.

Conversely, using a smaller player has its tradeoffs.  Besides the risk of being bought, or folding up, inevitably their capability focus will be esoteric.  So, carefully inspect core competencies. Look for a CDP that compliantly tracks customers, collects data in real-time, has a signal library fit for purpose, and can interoperate with a decision hub. That way, you’ll get differentiation leading to better customer experiences from your CDP investment.


[i] Adobe.com, https://business.adobe.com/products/real-time-customer-data-platform/RTCDP.html, June 2021

[ii] Oracle.com, https://www.oracle.com/cx/customer-data-platform/what-is-cdp/, June 2021

[iii] Salesforce.com, https://www.salesforce.com/news/press-releases/2019/11/19/salesforce-announces-customer-360-truth-a-single-source-of-truth-for-every-customer-across-the-worlds-1-crm-2/, November 2019

[iv] Salesforce.com, https://www.salesforce.com/news/stories/salesforce-cdp-innovations-make-customer-interactions-smarter*/, May 2021

[v] The Wall Street Journal, https://www.wsj.com/articles/publicis-groupe-signs-on-to-use-trade-desks-alternative-to-cookies-11617883217, April 2021

Don’t fall into the “we need a CDP first” trap

Introduction

Over the last three decades, marketers and customer experience experts learned the importance of employing data in data-driven customer decision making.  With the right data, they realized, machines could assist them in running better programs.  The result was more customers receiving relevant offers, and in turn leading to improved response rates and increases in customer satisfaction and retention.

This journey, however, wasn’t short on painful and costly lessons.  Stories were common of virtually endless data warehouse projects seriously behind schedule and overbudget.  In some of the most infamous cases, $10’s of millions were spent over years, with little to show for it.  Why?  Because from the onset the goals were misguided, and in many cases the wrong people drove the project. 

What went wrong?  Simply put, project sponsors set out with the wrong sequencing of goals – trying to solve for the ultimate data repository first and putting the most important aspect, who would use it and how, on the back burner.  In other words, they set the priority on sourcing data, cleaning it, and structuring it, and put off concerns on which applications would leverage it.  Build it, they posited, and they will come.

Challenges:

Sadly today, many embarking on CDP projects are falling into this same trap: 

Select the best Customer Data Platform (CDP) first, build it to solve for nagging problems of fragmented data and cross-device identity.  Later, help customer decisioning applications get connected to it.

The problems with this approach are:

  1. Without considering first which specific outcomes are crucial to success and working back to the data needed to support those, chances are extremely high the CDP won’t have the right data.
  2. History shows it could take years to agree on the right data, amass, cleanse, stitch, and organize it into a brand-new platform.
  3. Nearly every vendor calling themselves a CDP is now also claiming to solve for enterprise customer decisioning requirements.  Yet selecting the same vendor for both means a direct dependency on this repository, where the CDP must be up and running before the business can run its first new customer engagement programs.

Twenty years ago, at Unica, we saw this exact same problem.  The business was waiting for IT to complete the never-ending data warehouse project.  Or worse, they took matters into their own hands and selected a tool like Epiphany that required all the data structured and uploaded into its marketing data model (essentially a CDP – just not called it at the time).   Sound familiar? 

Again at Unica, to tackle this problem, we designed a different solution and approach.  We called the solution UDI (Universal Data Interconnect) which allowed marketers to map to existing data sources and run campaigns leveraging that data in place. 

We advised frustrated clients to set goals such as improving promotional response rates and urged them not to wait for data warehouse projects to complete.  The advice we gave them –  focus on redesigning campaigns, use advanced analytics to improve lift, and connect only to data sources required for those redesigned campaigns.  Essentially, let the new campaign rules drive the data source requirements.  References reported running successful campaigns shortly after project inception.  In just months they touted tangible economic benefits, bolstering their case to expand rollout.

CDPs are all the rage – what should I do?

First, the fact that CDPs are “all the rage” is part of the problem.  Upon closer inspection it’s the CDP vendors generating the hype, and not the paying clients.  Oddly missing are stories of resounding project success and massive ROI, and instead infamous stories of CDP projects failing to meet goals are piling up.  In Gartner’s 2021 Cross-Functional Customer Data survey, just 14% of respondents that reported having a CDP also reported achieving a 360-degree view. [i]  What we’re witnessing is the classic Gartner technology hype cycle, with CDPs now passing peak hype, and falling into the trough of disillusionment. [ii] 

In my 2019 article, To CDP or NOT – 3 tips – then you decide, the advice was beware of the hype in a poorly defined market.  Now, in 2022, vendors are trying to differentiate in a still nebulous market.  Here are some of the CDP subcategories that have emerged since 2019 [iii]:

CDPs selected primarily by Marketing and Business buyers:

  • Smart Hubs / Hub & Spoke CDP
  • Real-Time CDP
  • Marketing Cloud CDP (e.g., Adobe AEP, Salesforce CDP)
  • Campaign & Delivery CDP

CDPs selected primarily by IT, Data, and Analytics buyers:

  • Data Integration and Management CDP (focused on data collection and identity management)
  • CDP toolkits (used by IT to build a CDP)
  • Customer Analytics & Insights CDP

Certainly, the right answer isn’t to buy multiple CDPs.  Yet that is exactly what’s happening.  And for larger enterprises, some are buying as many as three, simply proving poor alignment between the business and IT. [iv]  Having lived through those days, be assured, the result is not alignment on outcomes, rapid access to the right data, and improved customer experience.  

At the same time, the right answer isn’t to let the business (or IT) solely determine the selection.   Although the business must have primary responsibility and control, it also must tightly collaborate with IT where both parties understand their roles and stick to them.  Though unfortunately not common, brands that get this right, and take inventory of what data & systems they have and what roles each party should play, report better success and ROI.  As such, follow these rules:

Do –

  1. Establish a strong partnership between the business & IT, align on use cases, outcomes, and how to measure success. Take inventory of existing capabilities and chart a roadmap together.
  2. Work back from the highest value use cases and desired outcomes and map out the data needed to support them. 
  3. Make it a requirement to be able to iteratively add to the data repository, as new programs might demand new data sources.  It won’t be instantaneous (think in terms of quarterly releases for production data source changes).
  4. Insist that the decisioning and execution capabilities and the CDP solution be evaluated on their own merits, and if in the end different vendors provide what’s best and can be integrated without herculean effort, select accordingly. Demand references that attest to their enterprise decisioning operational use, scale, and effectiveness.
  5. If evaluating (or already embarking on) a CDP project, simultaneously consider a re-vamped RTIM project. [v]  If a CDP project is ongoing, let the RTIM’s data requirements feed into the CDP’s, not the reverse.  And don’t wait for the CDP project to complete.  Select an RTIM vendor that can map quickly to existing data and can provide tangible proof of fast time to value and ROI.

Don’t –

  1. Accept at face value that the CDP’s RTIM engine will be “good enough.”  Rather, insist the vendor demonstrates unified inbound and outbound decisioning, real-time re-decisioning at scale, advanced analytics features, and capabilities to incorporate contextual streaming data.    
  2. Don’t accept that having a single vendor will outweigh the benefits of having a best-of-breed real-time interaction management (RTIM) engine.
  3. Wait until teams agree on all the right data.  That day won’t come.  Instead, if a CDP has been selected, demand an agile approach for how to enhance the CDP over time.  Ask the vendor of choice for RTIM to provide plans for running before and after the CDP project is done.
  4. Make the mistake thinking that a CDP Smart Hub can deliver scalable and maintainable RTIM decisioning.  None can.  Most rely on traditional segmentation and scripted / deterministic rule-based journey orchestration – all fraught with old problems of static segment definitions, deterministic offer assignment, and hard to maintain eligibility and engagement rules.  A modern RTIM engine with a 1-1 personalization approach solves for all these traditional limitations.

Conclusion

A CDP project, aimed at rationalizing customer data, improving identification, providing segmentation, and streamlining access seems a worthy cause.   Yet history teaches us that chasing a complete view of every single customer across all their devices and interaction points is an elusive goal.  What’s more likely is a CDP project turns into a giant hole, sucking time and resources.  And its expected benefits, like the light bent back on itself by a black hole’s vortex, may never emerge.

Instead, if a CDP project is ongoing, set it on careful rails, and manage scope.  Meanwhile, evaluate RTIM capabilities and embark in parallel to address those shortcomings and gaps.   Research ROI evidence from CDP and RTIM projects and compare.  If resources to fund both projects compete, pit them against each other based on business cases and prioritize investments accordingly.  And remember the lesson of sunk costs, and don’t be afraid to adjust project plans and budgets already in flight.  Many who have placed bets on RTIM cite quick successes that propel massive long-term returns — some with 10x ROI and more than $500 million in incremental revenue. [vi]  Don’t make the mistake of waiting and suffering huge opportunity costs.


[i] Market Guide for Customer Data Platforms, Gartner, March 2022

[ii] Hype Cycle for Digital Marketing, Gartner, July 2021

[iii] Customer Data Platform Industry Update, CDP Institute, January 2022

[iv] Ometria, https://ometria.com/blog/5-reasons-standalone-cdp-might-not-right-solution-retailers, January 2022

[v] What is RTIM, https://www.teradata.com/Glossary/What-is-RTIM, 2022

[vi] Forrester RTIM Wave, https://www.pega.com/forrester-rtim-2022, Q2 2022

The Hyper-Personalization Paradox: being relevant without crossing the CREEPY LINE

Brands are using AI to drive hyper-personalization, but can it also help them avoid being hyper creepy?

hyper-personalization

Source: https://www.adclarity.com/2015/04/digital-marketing-2015-hyper-personalization-display-ads/

Apparently, I have 8 seconds to grab your attention, so here goes.  What if I personalized every aspect of this blog for you?  That is, I knew so much about you – your reading behavior, the writing style you prefer, subjects you love – took all of it into account, and assembled these words and pictures just for you?  Would you find that creepy or cool?

At our conference in Las Vegas recently, I was a guest on Sam Charrington’s, podcast series “This Week In Machine Learning and AI.”  In that episode, we discussed a similar hyper-personalization scenario, where an automotive company used intimate knowledge about a consumer and her connected car to custom-tailor each marketing and service treatment[i].  And half-way through (at 23:07), Sam observed that although “consumers appreciate personalized experiences,” it can go too far and “sometimes come across as creepy.”

And suddenly, we both realized something.  Customer experience experts haven’t used AI to govern this.  In other words, CX pros personalize without recognizing if their personalization levels are approaching creepiness.

Which led to this question: can creepiness be quantified?  And if so, with that knowledge, could a company effectively use it?  With the right tooling, could they safely test and simulate how far personalization should go, carefully delivering each customer a tailored experience with the right level of relevance and value, without crossing into their creepy space?  Simply put, hyper-personalizing without being hyper-personal — the personalization paradox.

You’re marketing is creeping me out

Creepy land is that forbidden zone where consumers call out businesses for using personal data and revealing insights that are a bit too private.  And though consumers increasingly want personalized experiences (according to a recent Epsilon study[ii], 90 percent of consumers find it appealing), ironically, they will happily make examples of brands that invade their personal space.

No brand wants a creepy reputation as it implies:

  1. Stalking, snooping, or spying; collecting personal data and invading privacy
  2. Revealing something private, no matter how valuable the insight
  3. Not having customers’ best interests in mind
  4. Ill-intent, even when there isn’t intention to do harm

With big data galore, a culture of a data sharing, and pressure to mass personalize to remain competitive, you need ways to safely and systematically explore the creepy line’s location without ever crossing it.  Understanding what customers expect and why they love a product (or don’t) is crucial to great personalization.  Avoiding a creepy moniker means effectively steering clear of areas that are, frankly, none of your business.  And if the customer says it’s none of your business, it’s none of your business.

Today, the digital world abounds with copious quantities of demographic, psychographic, and behavioral data.  There’s a sea of it, because for decades companies have wired up clients and monitored them like lab rats.  And with more IoT tech and data coming every day, firms increasingly misuse it, giving customers more reasons to demand privacy.  The problem is the definition of what’s private and sensitive can be different for each person.  Hence the dilemma: under personalize and risk being labeled clueless, not cool, and worse miss out on revenue; over personalize and risk breaking trust and doing irreparable damage to your reputation.

Sorry we’re creepy. We apologize for any inconvenience 

Customer engagement professionals need new and scalable ways to survey buyers, collect preferences and permissions, sense their intent and moments of need, and personalize appropriately.  So, they need ways to test where that creepy boundary is.  That line is fluid and ever shifting and finding the right level of personalized insights and recommendations without crossing into risky territory is never without some uncertainty.

Where that line lurks changes with time because initially customers may be leery of something, then later adapt to it.  It also changes because privacy legislation changes, individual consumers have distinct levels of sensitivity, and varying levels of awareness. It can even differ by geography.  For instance, a 2016 study of 2000 consumers in Europe found that 75 percent were uncomfortable with facial recognition software used to target them with personalized offers (consumers in the US were much less sensitive)[iii]

Data-driven marketers have evolved their practices (Figure 1) using data to acquire more customer knowledge which in turn powers more personalization.  Over time, more marketers have evolved their practices, from the general advertising Mad Men approaches of the 1960’s to the super-personalized, AI-Powered approaches possible today.  It also highlights how that pushes them closer to the creepy space.

hyper-personalization evolution

Figure 1: Evolution of Data-Driven Marketing

Here’s the bottom line: if a given customers perception is it’s creepy, it’s creepy.  And depending on who slaps that label on, and whether their rights that have been violated, firms may face legal battles, fines, and reputation damage leading to significant commercial impact.  For instance, potential fines for GDPR privacy law violators can reach 4 percent of a firm’s revenue (up to a maximum of €20 million).

And none of that is music to a businessperson’s ear.

Creeping toward creepy

In 2014, Pinterest managed to spam a major segment of customers when they sent emails to unengaged women congratulating them on their upcoming weddings.  And Shutterfly made an even bigger spam faux pas that same year, congratulating women on the birth of babies they didn’t have.

In Figure 1, these events fall into the SPAM circle because marketers placed people into the wrong macro segments, and the resulting emails were both irrelevant and hilariously erroneous.   Clumsy customer experiences indeed, but not creepy-smart marketing.

Here are some other examples of Mad Men SPAM marketing:

  • You market wedding offers after a wedding – low sensitivity
  • You market wedding offers after a cancelled wedding – high sensitivity

On the other hand, the risk of being labeled a creepy marketer increases when knowledge of customers goes up, insights increase, yet marketers fail to understand an individual’s sensitivity to certain marketing actions.

For each marketing treatment, you need to determine if it will be creepy to everyone or only some:

creepy meter

Figure 2a:  Creepy Meter detecting creepy treatments

If it’s clearly creepy to everyone, during the pre-market approval process you should reject it.  But, if its potentially cool to some, and creepy to others, then provided you can discriminate at runtime using eligibility rules, you can approve its use for those who will find it cool.

To do this, get a readout on consumers’ sensitivity to hyper-personalization.  Build a model that learns this, and use this score to select, by individual, the levels of personalization they’re eligible to receive.

creepy index

Figure 2b:  The Creepy Sensitivity Index readout on each consumer

Here are a few examples of events, corresponding covert marketing approaches, and creepy readings:

 Event Covert Marketing (but not illegal) Creepy Meter Approve?
Hospital admittance / serious health issues detected Mortuary makes discount offers Extremely creepy Reject
Conversation recorded (without clear permission to use for marketing) Ads for products related to keywords in the conversation (e.g., pet toy video recently, which illustrates the point yet is likely a hoax) Very creepy Reject
Facial recognition or location detection Upon a patron entering a branch or store, their profile & preferences are relayed to a salesperson Borderline creepy Conditional
Consumer traveling; recent activity and calendar scanned Push notifications offering travel recommendations based on triangulating travel intent and destination Borderline creepy Conditional
Consumer browsing a web page with product offers Website background, images, language, offers, and other page fragments hyper-personalized Borderline creepy Conditional

Table 1: Examples of potentially creepy marketing

Leading-edge 1:1 marketers are constantly listening for keywords, tracking interaction device, time & location, codifying behavior, sensing mood, recording preferences, and using that knowledge to hyper-personalize with content variations in the millions.  The risk, however, is meandering into that forbidden creepy zone (even if it’s legal), so discerning this by customer by treatment is vital.

Suggestions

As you move into deeper levels of hyper-personalization, do so deliberately and methodically, fully grasping the implications before rolling out.  Consider taking this approach:

  • Collect only data that matters to your ability to personalize specific experiences – that your customer will value. For example, if you sell insurance, you don’t need to understand pet preferences unless you’re selling pet insurance.
  • Start with simple / minimal risk personalization strategies. These should easily pass the creepy test.  For instance, if you can tune you web experience to shopper color preferences, do it.  No one will find that creepy.
  • Gradually apply regional and demographic personalization strategies.
  • Use AI to crawl your products and content to extract taxonomies, attributes, cross-classifications, and descriptions. This will help better match customer intent and preferences to products that will match needs.
  • Use AI to match the right products to clients (making relevant recommendations) and doing so in a personalized way that enhances their experience
  • Use sampling to test hyper-personalization treatments, selecting a wide variety of customers.  Essentially, you get a stratified sample of creepiness raters.
  • In general, avoid even borderline covert marketing unless you have a firm handle on any backlash that might result if customers discover it. In a recent survey, most consumers (81%) think firms are obligated to disclose they’re using AI – and how they’re using it.[iv]
  • Be sensitive to consumers’ preferences for public recognition.  Some might love it if you great them by first name and show appreciation for their loyalty in public.  A few, however, may be mortified.

Hyper-personalization requires great data, great technology, and great sensitivity.  With GDPR now in effect, most businesses are proactively disclosing their data collection practices and privacy policies.  As consumers, we’re consenting to and accepting new privacy policies more than ever before, and in some cases, we’re even reading and understanding them.  Less clear, however, is exactly how that data is used, combined with other data, and when it might show up as an insight, recommendation, or hyper-personalization – and again, which of us might be freaked out by this personalization.

AI is driving personalization to new levels.  There’s no stopping that.  It automatically figures out what works and what doesn’t.  Techniques, such as Bayesian algorithms, quickly learn which offers work, when, and in which channels.  Others, like collaborative filtering, find which products pair best, that in turn drives cross-sell and bundling strategies.  Design of experiments and monitoring devices measure the impact and enable fine tuning.

What’s missing, however, are tools to sense consumers’ sensitivity to personalization, so overt practices are optimized with the right people, and so covert methods are prevented from ever reaching production, or if they are approved for use, are carefully applied.

The study shown in Figure 3 provided some proof that overt personalization pays off.   Yet the very definition of overt blurs as AI improves, content becomes hyper-conditional, and levels of personalization get more complex.  Thus, you’ll need more sophisticated ways to gauge levels of personalization relative to creepiness, and the sensitivity levels of different people.

personalization

Figure 3: Overt vs covert personalization performance[v]

Conclusion

Great marketers push beyond perceived barriers by understanding customers, knowing products, and then elegantly combining creativity and technology to provide valuable recommendations and experiences to customers.  Ironically, when done right in the eyes of the receiving consumer, they don’t appear to be selling anything; instead simply providing a service.

With website personalization, one-to-one content, natural language generation, image recognition, and countless other AI tools, businesses inexorably march toward hyper-personalization.  Make sure you manage it, so you’re always cool and never creepy.


Endnotes:

[i] https://www1.pega.com/insights/resources/pegaworld-2018-pegas-ai-innovation-lab-sneak-peek-and-your-vote-counts-video, June 2018

[ii] http://pressroom.epsilon.com/new-epsilon-research-indicates-80-of-consumers-are-more-likely-to-make-a-purchase-when-brands-offer-personalized-experiences/, January 2018

[iii] https://www.forbes.com/sites/fionabriggs/2016/07/04/fingerprint-scanning-is-cool-but-facial-recognition-creepy-new-richrelevance-survey-shows/2/#493b953f3d68, July 2016

[iv] https://www.richrelevance.com/blog/2018/06/20/creepy-cool-2018-richrelevance-study-finds-80-consumers-demand-artificial-intelligence-ai-transparency/, June 2018

[v] https://www.sciencedirect.com/science/article/pii/S0022435914000669#abs0005, March 2015

 

My 2019 Martech articles

To CDP or NOT – 3 tips – then you decide

4 Golden Rules for Knowing and Honoring Thy Customer

Dear CMO: Sorry, but we need a CVO (Customer Value Officer)

A 6 pack of tips when replacing creaky MRM software

The Final 4: MarTech Platforms and Ecosystems

Will AI in digital marketing lead to marketer obsolescence?

One-to-One Marketing: 20 years later, are we there yet?

Marketing’s Strangelove: How I Learned to Stop Worrying & Love Service

5 predictions for CRM’s AI applications in 2019

Consumers kill for digital convenience: Can AI help your business?

We’ve all seen countless images of the proverbial empowered consumer.  That mythical creature seeking convenience and instant gratification.  It’s a conjured-up image of a time-strapped digital native that juggles five devices and 15 tasks, interacting simultaneously on a host of channels, using their super-human consumerism to wield terrifying powers capable of paralyzing unworthy brands.

AI in business

Hyped-up as they are, these visuals still serve a healthy purpose.  They remind us just how far digital bars have been raised, and that should cause pause and beg the question, “as businesses, are we measuring up?”

Collectively, the answer is we’re not.  In fact, consumer satisfaction studies repeatedly confirm it.  Simply search on, “consumer study poor digital experience” and voila – hundreds of examples.  One study conducted by Software Advice found over 90 percent of consumers had one or more deal-breaker digital experiences when seeking customer support on mobile[i].  So, in an age with so much technology at our fingertips, why are we falling short?  What can we do to fix this?

Too often, we fall short because we focus on the wrong problems in the wrong order.  To correct this, it’s important to first consider a modern consumer’s mindset and what they’re demanding.  With greater resolve, they’re chasing after nirvana, in a quest for brands that deliver products, services and experiences that are:

  • Valuable / relevant
  • Consistent / high-quality
  • Enjoyable / attractive / personalized
  • Familiar / trusted
  • Secure / lower risk
  • Compatible with values / social beliefs
  • Convenient / simple / timely

Enterprises, however, can’t perfect all seven of these deadly-important areas simultaneously.  So, the trick is finding what matters most, and then using AI and automation technologies to help.

AI in business won’t magically transform a company with fundamental structural flaws, such as poorly designed products, no unique selling proposition, or cost containment issues. These take great human leadership, creativity, and collaboration to fix.  And it won’t manage the job of building and maintaining corporate culture.  But in other cases, AI applied pragmatically to streamline processes and eradicate friction can make an enormous difference.

What’s proven to be a winning recipe in business is paying attention to customer-centric details.  Brands hyper-focused on customer experience build a lasting reputation and increase in value.  Look at Apple, Uber, Airbnb, Amazon, and even Booking.com.  All built on the backs of nailing digital experience, often with a mobile-first mentality.  Yet, with seven major areas and hundreds of experience details to consider, where should you start?

Is convenience king?

Out of the above seven criteria, convenience may be the most important in terms of driving long-term value, and the one CX professionals can influence the most.  Perfecting convenience can separate winners from losers; sellers from re-stockers. Consider this quote from a CEB study[ii]:

“Brands that help consumers simplify the purchase journey have customers who are 86 percent more likely to purchase their products and 115 percent more likely to recommend their brand to others.”

AI in business

And convenience contributes to and builds up other factors, such as being viewed as valuable, familiar, and trusted.  It may be one of the chief drivers of loyalty.  It can even trump something like price.  For example, wireless carriers have learned consumers prefer unlimited communication plans because they’re convenient and simple, even though they may cost more[iii].  Consumers make impulsive and emotional purchase decisions when enough of the factors align, and tend to justify things afterwards.  Since consumers’ assessment of convenience is qualitative, figuring out how to elicit positive emotional responses regarding convenience is crucial.

In a consumer’s mind, the label of convenience translates into a business being viewed as:

  • Useful and suitable
  • Easy to buy from, use, and transact with
  • Requiring less overall effort
  • Simple to understand / responsive to issues
  • A time saver

Each is a judgment call by an individual, but with critical mass and time, these opinions converge to a collective market consensus (the wisdom of the crowd).  They manifest themselves in the form of review scores, ratings, and tribally-shared social advice.  It’s this reputation that drives commercial allegiance.

Largely, consumers make emotional decisions when they choose one product over another.  Sometimes they want combinations that are seemingly impossible to get:

  • A readymade desert that tastes great and is nutritional
  • A car that is inexpensive, fast, great looking, economical, and durable
  • A delicious pizza that comes in a few minutes, is made by an environmentally-conscience brand, and oh…costs less than $10

It’s no wonder brands struggle to satisfy whimsical consumer desires, but fickleness aside, they cry out for brands to simply simplify things.  Ironically, they work longer and harder to live in a world that supplies them with exploding choices for everything but precocious little time to weigh options, which in turn drives them to crave simplicity in decision making. They demand trusted information that is easily accessible.  They want user-friendly ways to weigh options, and help navigating processes.  In a 2016 survey on travel shopping preferences, consumers picked ease of use as the top reason they booked using an online travel site.[iv]

AI knows there’s no second chance to make a first impression

Consumers want convenience, but which actions will achieve maximal impact?   Before answering this, keep in mind a marketing 101 maxim: perception is nine tenths reality.  And perception is often built-up on first impressions.  Further, when an initial impression goes wrong, it takes multiple positive interactions to repair it.  As such, consider using AI as tooling in helping elevate levels of perceived (and real) overall convenience in critical first-impression customer journeys such as:

  • Getting a quote
  • Completing an application
  • Navigating a sign-up or onboarding process
  • Completing an initial purchase
  • Setting up online payments

And during service scenarios such as:

  • Order status checking
  • Returns
  • Claims
  • Lost card replacement process
  • Scheduling an appointment
  • Finding a doctor

How does AI support these?  If we agree that AI is a mixture of automation and intelligence technologies, AI can help streamline the process for consumers getting answers such as the status of an order, return, or claim.  Further, consumers can even ask these systems to schedule a store or branch appointment, find the most convenient time and location, and then add the appointment to their calendar.

AI-powered chat bots (and other self-service portals) can provide 24 x 7 first-line support for answers to questions like:

  • How to transfer funds
  • Make an online payment,
  • Get account and policy status

In many cases, without any human intervention, bots can answer questions, close out an inquiry, and even assist with completing a transaction.  In situations requiring human agents, AI-based systems can orchestrate seamless hand-offs of data and case details, allowing humans to pick up precisely where machines left off.

Make no mistake, AI skills are already going far beyond performing simple tasks.  Today, AI engines can give nuanced advice, surface unique insights, and provide proactive recommendations.  The most sophisticated systems even factor in customer context, such as location, weather, mood, and motivation before arbitrating on the next-best-action.

In banking, for instance, AI can help track savings and spending habits, and send threshold alerts. To illustrate, suppose a consumer has a recurring transfer from checking to savings each month.  AI can monitor account balances and send an alert when upcoming bill payments are forecasted to drain a checking account beyond non-fee thresholds.

In healthcare, there’s Dr. AI from HealthTap, who can engage in conversation aimed at providing triage and care advice, using a locally-stored health profile, a network of over 100,000 doctors, and Bayesian learning AI to serve up the next-best-advice.

What’s the right set of technologies for your stack?

Well, there’s good news and bad news.  First the bad news – there is no one right answer, and with thousands of vendors (6,829 in this marketing landscape), open-source packages, and resulting combinations of solution stacks possible, there’s no evidence anyone has found the absolute best combination, or ever will.

Now the good news – you have a ton of alternatives, with many combinations likely to work, but finding a stable and winning blend is tricky.  Some tools, on the surface, look easy to use but aren’t.  Others won’t live up (functionally) to their marketing hype.  The best advice is to form a solid basis with at most one or two platforms covering essential infrastructure (that you can’t afford to switch in-out), and make sure these platforms allow for plug and play with adjacent pieces likely to have shorter useful lives.

For example, find vendors with durable connectors for wrangling data into an actionable customer profile, a real-time hub that acts as a central brain to arbitrate customer decisions, and integrated customer analytics.  These components are foundational, and must be centralized so they operate in a channel agnostic fashion.  New channels may spring up, and others diminish in importance, but a decision engine which feeds on key behavior data, arbitrates decisions, and renders appropriate next-best-actions is a necessary constant.

Final thoughts

There’s a real irony forming with AI in business.  We’re building and teaching computers to be more human, while as humans we’re being led and conditioned by our busy lives and workplaces to be more machine-like.  The problem is computers are no humans, and humans are poor computers.

Step back and consider what’s best for the consumer.  Providing great first impressions, as well as seamless and gratifying ongoing experiences, requires well-functioning and well-behaving humans and machines working in concert.  Consumers want products and services they’re proud to recommend because they make life easier and more enjoyable. When things go wrong, they expect flexible help and fast solutions.  When self-service isn’t working, they demand cases smoothly transition to well-informed, caring, and compassionate humans.  Brands must skillfully, judiciously, and mindfully weave together computer systems with humans as they design for convenience in all the complexities of customer journeys.

Delivering convenience must be a paramount goal, so reflect on the unique characteristics of the individuals you serve and the nuances of their voyages.  Dry run how each will navigate your services:  some will be older and less familiar with technology; some will be capable of juggling five devices on five channels; sometimes technology will fail and require fallback processes.

Ultimately, your convenience reputation will be defined by a diverse set of consumers steering through a wide variety of conditions and processes.  Use AI and humans to start off on the right foot, deliver consistently under normal operating conditions, and to proficiently handle the inevitable miscues.

[i] https://www.softwareadvice.com/resources/improve-cx-with-mobile-support/

[ii] https://news.cebglobal.com/press-releases?item=128138

[iii] https://www.theverge.com/2017/2/17/14647870/us-carrier-unlimited-plans-competition-tmobile-verizon-att-sprint

[iv] http://www.traveltripper.com/blog/why-do-travelers-prefer-booking-with-otas/

 

4 well-intended Marketing Automation BAD HABITS to break

Let’s face it.  No one sets out to botch something up or fall short of reaching a goal.  When marketing automation was in its infancy, and pioneers like Don Peppers, Martha Rogers, Tom Siebel, and Paul Greenberg envisioned marketing and CRM systems in the mid 1990’s, they set the right vision, believing great customer relationships could be initiated, fostered, and brought to scale with the right data and technology.  Essentially, their collective creed was:

  • Focus on the individual customer (e.g., be one-to-one and customer centric).
  • Manage the relationship by understanding customers’ buying cycles, needs, and behaviors across the marketing, sales, and service functions.
  • Use that knowledge to custom-tailor and personalize the experience.
  • Use technology to deal with the scale required by larger businesses.

Thirty years later, sadly, this vision still seems out of reach, or at best, only partially realized.  So why is that?  What’s held back the realization of the vision?  What are we still doing wrong?

Here are four unhealthy habits of nearly every marketer (so the good news is you’re not alone).  Fix these, and you’ll get a distinct advantage, and get closer to marketing optimization and CRM nirvana.

 

Bad habit #1 – Focusing on customer segments and not individuals

Customers are individuals.  Each has unique characteristics, nuances, and contextual needs that define who they really are.  And though we’re awash in a wealth of unique behavior data, it’s a common mistake to continue trekking on the beaten path, making decisions based on segment characteristics rather than individual ones.  For years, we’ve slotted customers into segments because we had no other choice, oversimplifying who they really are.

1 to 1 marketing automation

It’s understandable in the initial stages of relationship management that businesses make broad customer classifications such as:

  • Returning visitors
  • Mobile visitors by geography and device type
  • Registered users by gender and age (leading to segments like Millennials, Gen Zs, and Gen Alphas)
  • Non-responders to an email campaign

Yet after these customers repeatedly interact and transact, clearly stating their implicit and explicit preferences, continually handing over lifestyle and contextual data, there’s no excuse for still making generalized, segment-based decisions.  We’re spending millions collecting, storing, and refreshing specific behaviors and preferences, so we should use this data to drive individualized decisions and to customize treatments.

In a recent paper titled “Crossing the chasm: From campaigns to always-on marketing,” [i] Rob Walker and Matt Nolan contend that “building audiences using segmentation is a process that introduces severe challenges such as compromised relevance, unscaled labor, and collisions and conflicts.”  They go on to suggest using a next-best-action approach, describing it as one that “targets individual customers, rather than segments – leveraging their unique needs, preferences, and context.”

 

Bad habit #2 – Focusing on selling products instead of customers’ needs

Sounds crazy, right?   How else will we make money if we don’t sell products?

Still one of the cardinal sins holding back modern marketers is focusing strategy and tactics solely on selling products.  By doing this, we’re exasperating two problems:

  1. Product owners, incented to relentlessly push their products, bombard consumers with ill-conceived campaigns containing messages and offers that conflict, overlap, or worse, aren’t even applicable. When viewed through a customer’s lens, these promotions have little to do with their actual needs.  As such, marketers often completely miss the relevance mark.
  2. Even when a product fits, companies fail to provide well-timed promotions, convenient services, and a context-sensitive experience. Oblivious to the individual’s situation, they make company-focused timing and interaction decisions, such as blindly promoting a product simply because ad budget might otherwise expire, or failing to promote crucial services in conjunction with the product..  Consequently, tactics are entirely out-of-synch with the customer’s buying cycle and experience expectations.

Together, these problems compound customers’ negative brand perceptions.  Rather than providing a stellar buying service, well-intentioned marketers inadvertently (and increasingly) overwhelm, turn off, and tune out consumers.  Essentially blind to journey requirements, marketers miscalculate customers’ value calculus, timing preferences, and the overall interaction experience they need and expect.

In study after study (year after year), consumers and brands acknowledge these issues, both resoundingly stating their desire for solutions.  For example, in 2012 the Corporate Executive Board (now part of Gartner) surveyed more than 7000 consumers and 200 CMOs, finding that what consumers want from marketers is relevance and “simply, simplicity.”[ii]  That was 2012.  It’s 2018, and not much has changed.

If corporations keep strategy oriented on selling products, customer relationships will remain transactional and experiences sub-optimal for many more years.  Maybe we’ve forgotten what the R in CRM stands for.  It was put there to remind us that what matters most is long-term relationship building.  Our quest should be to unravel the mystery of a customer’s ever-changing needs, their journeys, and what drives their loyalty.  Our job is to use that knowledge to create custom-tailored experiences.

 

Bad habit #3 – Building channel-based versus coordinated intelligence

Shortly after September 11, 2001, the US government came to a stark realization that its various intelligence agencies were massively disjointed and compartmentalized.  This hadn’t happened overnight.  It was years in the making, and although for decades ample resources were poured into each agency, no one agency was responsible for coordination.  Attempting to solve this problem, the government established the Department of Homeland Security.

channel intelligenceIn a similar vein, some firms have built up marketing automation and CRM intelligence in silos for over 30 years.  In each channel (e.g., email, contact centers, web), they’ve poured substantial resources into projects aimed at beefing up customer intelligence.  Each channel amassing data, rules, and intelligence, but no one designated as the coordinator, and information rarely shared.  Subsequently, as more channels emerged, the problem grew larger. Today, many companies have 15 or more channels to manage, and no coordinating function.

To provide wonderful experience, brands need a function responsible for coordinated customer analytics, intelligence, and decision making, such as depicted in Figure 1.  Its role is straightforward:

  1. Collect interaction intelligence and contextual data from each touchpoint, and connect it directly to a system that can leverage that information immediately.
  2. Be brain-like, tracking behavior patterns in real-time, sensing needs, and using analytics to dynamically calculate value, comprehend preferences, and predict intent.
  3. Play the arbitrator, weighing an individual’s needs against corporate initiatives, policy, risk tolerance, budgets, and economic goals. Make instant and well-balanced decisions, track the results, and learn from each decision.

 

engagement hub

Figure 1: Engagement hub provides coordinated omnichannel intelligence

Think of this, not as another physical department, but instead as a virtual customer-centric hub. Designed from the ground up to be connected to all customer touchpoints, it’s journey oriented versus channel centric.  Cognizant of what transpired, why, and what’s best to do next, its embedded strategies and rules act as a real-time arbitration committee – making data-driven decisions in milliseconds versus months.

This hub is also more than a customer data platform.  It’s an end-to-end engagement hub responsible for not only gathering and coordinating intelligence, but also gleaning real-time insights and taking action.  To deliver on that, it manages key data, customer analytics, corporate rules and processes, and channel interfaces.  In a calculated and auditable fashion, it makes recommendations, delivers them to touchpoints (the channel apps fine tune the experience), and it learns from a systemic set of impressions and responses.

 

Bad habit #4 – Worrying primarily about marketing automation and technology, instead of experience

Automation, and the technology that enables it, efficiently repeats tasks.  That’s great, if you computerize the right tasks that deliver the right experience.  Look at it this way:  spammers are very effective at marketing automation.

Above all, to achieve lasting loyalty and build value, avoid the temptation to recklessly make existing marketing processes more efficient.  Granted, some existing tactics may work, yet chances are many need to be revamped (or ditched entirely), and recognizing that requires reframing priorities.  Preferably, focus on customer journeys, and ask if marketing tactics contribute to a better experience.  Consider journeys such as:

 

  • Prospects searching for products to discover and learn more
  • Customers seeking out trials to test those products
  • Customers embarking on a buying or upgrade process
  • Customers doing research on price, available incentives, and financing options
  • People filling out an application, making a booking, or redeeming rewards
  • Consumers getting stuck, struggling, or in need of assistance
  • Clients reaching milestones, entering new life stages, or affected by key events

No organization can serve its customers without supporting people.  To illustrate, assume your kiosk has a reasonable self-service experience, but then something goes wrong.  The technology hiccups, and a customer begins agitating.  Without back-up mechanisms, this situation can quickly turn disastrous.  To avoid it, you need reasonable levels of redundancy, well-tested cut-over processes, and intelligent detectors that gauge the need for human intervention, and then bring the right human into the loop.

Brands that thoughtfully consider these scenarios, elegantly weaving together marketing automation, people, and processes, will deliver better customer experience.

But how can you be sure you’re improving experience?  In short, hyper-focus on one journey at a time, pick metrics to measure each, and correspondingly measure overall satisfaction.  Once more, here’s where many firms trip up.  Instead of measuring whether the customer is fully satisfied with, say, the onboarding journey, they only measure certain tactics, like whether a welcome email got sufficient opens and clicks.

Conclusion

Be honest. We all have some bad habits that admittedly we should give up for our own good.  But breaking old habits isn’t easy.  And like any habits, we’re comfortable with our marketing automation traditions because the outcomes are predictable.  Nonetheless, just because they’re predictable, doesn’t mean they’re best for our customers.

When we force-fit customers into segments, push products on them that we want to sell, confuse them with conflicting and poorly orchestrated channel messages, and hyper-focus on our efficiency (versus their experience), the results will be predictable alright – in other words, we’ll get our anemic 0.5% response rates and slow growth.

If you think, however, you can do better, then take a chance.  Collect as much individualized data as you can, use it to personalize customers’ experiences, coordinate decisions with one principle engagement hub, and as Steve Jobs said, “…start with the customer experience and work backwards to the technology.”

[i] Crossing the chasm: From campaigns to always-on marketing, https://www1.pega.com/insights/resources/crossing-chasm-campaigns-always-marketing , December 2017

[ii] CEB Press Release, https://news.cebglobal.com/press-releases, May 2012

8 AI trends for Martech

In this 8th and final short video in my Machine Marketing Series, I give my views on the “The HOTTEST AI trends for Martech” to keep your eyes on in 2018.

 

I cover eight key AI trends to keep a watch on:

  • AI data and processing speed
  • Natural language processing (NLP)
  • Image recognition
  • Natural language generation (NLG)
  • Automation and process management
  • Transparent / Explainable AI
  • One AI brain
  • AI organizational dynamics 

8 MACHINE LEARNING for marketing areas to watch in 2018

If you’re like the unbreakable Kimmy Schmidt and got stuck in a bomb shelter in 2017, it may be both a blessing and a curse that you missed the machine learning for marketing media frenzy.  Machine learning showed up everywhere, rivaling electricity’s systemic emergence a century ago, allegedly injecting sage-like wisdom into everything from sales forecasting tools to email subject lines generators.

machine learning for marketing trends

But buildup and hype aside, real progress was made in using machine learning for marketing purposes, infiltrating impactful areas as unprecedented investments poured in.  More resources supporting great minds pushed forward innovation in areas like image recognition, voice technologies, and natural language generation (NLG).  And savvy brands that mindfully wired these into marketing applications boosted performance, in some cases realizing 400 percent ROI.  Here are eight areas worth watching in 2018 that saw significant advancement and are well-poised to advance further.

 

Big data and a need for speed

Like real estate’s mantra of location, location, location…. machine learning’s very foundation and success are predicated on its thirst for big data and its need for scaled-out, lighting-fast processing speed.

But for data lovers, just as the internet giveth, during its unabashed wild-west data rush era, privacy laws spurred on by libertarian outcries soon may taketh it back.  So, keep an eye on data privacy regulations, such as GDPR (which takes effect in the European Union in May 2018), as they could seriously impact future data availability.

Regulatory environments notwithstanding, with abundant data stockpiles and processing speeds continuing an inexorable march forward (vis-a-vis faster GPUs and cloud computing), expect more advances.  For example, firms will latch onto progressive profiling and incremental data hygiene methods to refine first-party data, as emphasis shifts away from second and third-party data sources subject to stricter privacy regulations.

Capital One did just this in a routine email sent in late 2017, when they requested members update annual income data on file (previously obtained by appending from a third-party source), suggesting that if customers cooperated, higher lines of credit would be their reward.

2018 will see more of this.  Organizations will harvest their big data crops, sifting off customer behavior insights aimed at deepening relationships and selling more products faster using less resources.  Anticipate more investment in customer data platform, compiling, virtualization, and rationalization initiatives, with more computing horsepower and human capital helping the harvesting efforts in 2018.

 

Marketers!  You need bionic ears & AI voices

As humans, we’re obsessed with creating and perfecting tools that overcome our limitations, take our skills to new levels, and make our lives better.   And last year marked the point that AI devices such as natural language processing, text analytics, and language generators stormed the commercial scene and provided marketers with enhanced listening and speaking abilities.

Listening means understanding not just hearing.   Enterprise marketing experts were graced with technology that can listen and understand millions of customer inputs simultaneously across a plethora of channels.   Call scripts, reviews, complaints, social posts, and a host of other forms of feedback can be ingested, concept labeled, checked for sentiment, and gleaned for intent.  Look for more applications and advances that propel the viability of using tech to listen and understand the voice of the customer at scale.

CRM AI - Voice recognition

Source: http://www.scmp.com/news/hong-kong/economy/article/2080503/hsbc-launch-voice-recognition-hong-kong-phone-banking

Although Siri, Alexa, Amelia, Cortana, and other AI assistants weren’t born in 2017, they arguably came of age, infiltrating our homes, and entering the workplace.  If you didn’t catch it, Amazon announced Alexa for business at its re:Invent conference in November.  Machine voices will continue to spread to business places like conference rooms, service channels, products, and kiosks.  And companies (such as HSBC, Citi, and Barclays) found voice signatures another reliable biometric authentication tool to streamline digital transactions.

In 2018 machine learning may not replace you, but using it to handle routine tasks, listen to and converse with customers, and accept it as part of your marketing, service, and sales team will be essential to your survival, as you’re asked to up your productivity and customer experience enhancing game.

 

Put machine learning’s eyes on customer data, journeys, and marketing content

Discovering, understanding, and learning from customer journeys requires mechanisms to observe and quickly answer question such as:

  • Which customers are eligible for offers, got them, and responded
  • Where do customers struggle, pause, or get stuck in their journeys
  • What sequence of offers and channels lead to conversion (attribution)
  • When do certain customers show up on the marketing radar; and when do some drop off and why

Marketing specialists started using journey analytics to piece together the customer behavior puzzle, and the tech got better at going beyond business intelligence guesswork to prescriptive AI.  More AI vendors bubbled up offering solutions that don’t just sum and sort data, but provide an analysis layer peppered with NLG narratives (such as Narrative Sciences and Arria).  Others majored on providing better path-to-purchase journey visualizations, like Clickfox and Pointillist (although its arguable whether these are really AI tools).

And some focused efforts at bringing image recognition to real machine learning for marketing use. Deep learning and image recognition applications went far beyond surfacing that labradoodles and fried chicken appear related.   AI image processing proved its mettle for filtering and categorizing marketing and sales content, helping marketers better understand customers’ content needs and serve them appropriate and relevant content and offers.  Brands began expediting and personalizing services using the ubiquitous smartphone and AI’s ability to pinpoint products and people in pictures and video.  For instance, Aurasma launched an app that democratizes adding augmented reality to a consumer experience by simply triggering a video or animation overlaid on a smartphone screen based on recognizing a pre-defined image.

 

“Hey AI!  Create me some emotionally compelling content”

Marketing pros earn their pay by crafting compelling content using words and visuals to express value and elicit responses.  They dance their evocative content lures in front of consumers knowing those customers will strike if needs are met and emotions satisfied.  But up until just recently, most of these assets were home spun.

Yet last year, avant-garde marketers began applying AI to content generation, realizing that to compete in the new world (where content must be both mass produced and highly personalized), old tools must give way to new ones.

CRM AI - Natural language generation (NLG)

Source: https://blog.7mileadvisors.com/natural-language-generation-the-game-changer-for-the-21st-century-16b5a7ed3336

And firms like Persado began facilitating the march toward marketing’s creative nirvana, using NLG, emotional science, and machine learning to optimize (down to the preferences of an individual) the attractiveness of marketing offers by altering language, font, color, position, and other creative formatting.  Results are not just encouraging, they’re somewhat staggering:  click-through-rates (CTR) increased by 195 percent; conversion increased by 147 percent.

In one case using this technology, Amex Rewards generated 393,000 versions of engineered copy for its banner ads aimed at getting a customer to burn down their rewards points.  The winner drove an 8.6% conversion rate, thumping the control’s 3.5% rate.

 

Self-driving marketing – Your AI digital agency

Practitioners continue to debate whether machine learning data prep, analytics, and marketing in general can be fully automated (particularly at the enterprise level), but nonetheless, the tools keep coming.

To this end, an interesting arrival on the scene was a vendor called Frank.ai, albeit clearly for down-market marketers.  It’s literally 8 steps to setup and run a multi-channel campaign:

  1. Enter name and dates for campaign
  2. Select audience by city, interests (mix of music, pop culture, shopping, sports, etc..) or look-a-like targeting; age (typical bands); gender; language
  3. Decide on display ad on desktop or mobile or both
  4. Specify budget (e.g., $1000)
  5. Upload display ad creative image
  6. Add social media promotional ad (if desired)
  7. Add URL for click through (analytics tracking automatically setup in Google Analytics)
  8. Enter payment method (credit card or PayPal)

Simple and unsophisticated?  Check.  Will this kind of tech put further pressure on enterprise vendors to make their tools easier to use?  Check.

 

Explainable machine learning for marketing

As machines crunch data, score customers, make predictions, and automate marketing, being able to explain to humans what’s going on and why is becoming more important.

Some models are very opaque, and simply can’t explain themselves.  Given this, firms will need AI controls in place (such as offered by Pega) to prevent opaque models from being deployed in certain situations. Others are more transparent, easier to tease apart, and safer to unleash.  Research and applications are stepping up in this area, so stay tuned, especially as more regulations emerge such as GDPR, that dictate data rights and demand algorithmic transparency.

 

Building one machine learning for marketing brain

Like opinions, everyone seemed to have an machine learning software brain to peddle in 2017 including:

  • Watson from IBM
  • Einstein from SFDC
  • Sensei from Adobe
  • DaVinci from SAP
  • Magellan from OpenText
  • Always-on Customer Brain from Pega

What was less clear, however, was if each had one coherent well-integrated brain – or instead a multitude of disparate intelligence modules from the various acquisitions.  In the case of SFDC, for example, between 2012 and 2016 they acquired 21 companies, of which at least nine had some form of machine learning for marketing tech.

Stay tuned to AI developments from these and other leading marketing technology vendors, and pay close attention to whether they demonstrate real intelligence integration in the solutions they sell.

 

Machine learning for marketing organizational dynamics

Accomplished scientists and artists have rarely been cut from the same cloth.  In 2017, Walter Isaacson released his long-awaited masterpiece, the biography of Leonardo da Vinci, adding it to his corpus of history’s best examples of exceptions to this rule (Ben Franklin and Albert Einstein being other similar biographies he’s written).

So rather than wait for enough Leonardo types to come along, organizations would be wise to work toward making connections across machine learning and creative disciplines, which will be key to maximizing their capacity to innovate.

Along with attracting, merging, and retaining the right talent, brands must also acquire the right machine learning technology, but even more important is having a concerted AI strategy closely coupled with business objectives and marketing improvement goals.   It’s imperative to work from well-defined use cases and clearly articulated outcome definitions backward to the technological and data solutions necessary to support them.   Further, firms must use nimble organizational structures with small teams made up of artists and scientists; IT and the business; re-aligning resources into small digital factory teams that are wed to agile methodologies and collaborative approaches.

2018 and beyond

In all, 2017 was a banner year for machine learning for marketing, in terms of both hype and legitimate commercial progress.  Keep track of these eight areas, and you’ll be following the most interesting and promising leading-edge AI technologies and trends that will prove paramount to success in improving and automating marketing and customer experience.

Customers Are INDIVIDUALS Not Averages | How RTIM Treats Them Special

Real-Time Interaction Management (RTIM) delivers personalized experiences to people.

Earlier this year, I signed up for a points program with a large hotel chain, and somehow my last and first name were reversed in the enrollment process.  The next day I noticed the welcome email message started with, “Jeffs, we’re so happy you joined the fam.”  Figuring it was my botch I went online and fixed it in my profile – problem solved – or so I thought.

awesome not averageApparently the erroneous data instantly had spread, like a venomous bite, and propagated to other databases.  My feeble attempt to suck it from the source was too late and didn’t work.  Still, nearly a year later, I still get messages starting with, “Hello, Jeffs” which rather than setting an intimate tone for the oncoming interaction, sets a grating one.  I may still read on, yet I’ve been reminded upfront I’m essentially a bunch of bytes to the interactor on the other end.

I get it – mistakes happen; systems are stitched together, and people (and the systems they use) are under enormous pressures to share data, scale, and automate.  Nonetheless, when firms chose to operate this way – neglecting to fix little things, they’re failing to measure the impact of the most fundamental flaws that often make or break an entire customer relationship.

Traditional Marketing Technology (Martech) vendors espouse solutions allegedly providing personalized communications.  And when their clients deploy these systems, they assume they’ll develop meaningful relationships with individual customers but, the fact is, most won’t.  Customers still routinely report broken processes (like my example), one-size fits all treatments, non-individualized experiences, and very few (only 27 percent) think AI will help.[i]  So, if you’ve been entrusted with helping achieve loyalty-building relationships, that’s more than a little discouraging, since it’s not for lack of will, good intentions, invested time, or resources.

As consumers, we browse, research, shop, and purchase constantly – sharing our information freely (sometimes unbeknownst to us).  We surrender our identity, intentions, preferences, history, location, and so on – often repeatedly, yet we see little in return in terms of well-tailored products, services, and experiences.  And this goes beyond the obvious, such as in self-service experiences (where our expectations for personalization are low), into human-assisted channels where our expectations are higher, but paradoxically we often encounter robotic-like agents.

Consider how brands place customers into huge buckets that dictate treatments:

  • Most loyalty programs have about four tiers. If a program has 10 million members, that’s about 2.5 million members per tier.

 

  • When a data scientist builds a decile-based RFM model (RFM stands for an algorithm that scores based on recent transactions, frequency of them, and their monetary values), that’s 10 segments, and again about 1 million customers per segment.

 

  • And even when zip code level data is used, that’s still about 8,000 people to a segment – and let’s face it, as much as you love your neighbors, you know how different you are from them.

 

Rarely do we enjoy being stereotyped.  When we’re assigned to a troupe, and approve of it, it’s usually because we made a conscious choice.  We find more differences than similarities when we are forced into artificial groupings, and we get rightfully grumpy with being pigeonholed.  Conversely, we rave when companies celebrate our uniqueness, and we love to tell these stories.

 

RTIM – Your AI ROI Machine

AI, arguably the most overused and abused word of the year, particularly among Martech vendors, does have in its midst the underlying technology to begin to solve for improving and individualizing customer experiences, and in techno-geek terms it’s known as RTIM (Real-Time Interaction Management).  Businesspeople using RTIM, however, would rather focus on results versus names, and the reality that these systems consistently generate 300 percent plus ROI [ii] – in other words, they are AI ROI Machines.

Why do RTIM systems outperform traditional marketing automation systems?  Simply put, it’s because they make decisions one individual at a time, hence delivering one-to-one interactions.  Figure 1 depicts the difference between many of today’s Martech systems and an RTIM system:

RTIM

Figure 1 – Typical Martech system versus RTIM system

Figure 1’s top lane depicts how traditional Martech systems place customers into segments, assign offers to those segments, and execute treatments in each channel.  On the other hand, RTIM systems act on behalf of each customer (instead of tranches of them globed into segments).  Moreover, RTIM systems operate based on one set of coordinated rules and analytics linked into a set of arbitration strategies – for thousands of customers per second.

For example, a company with five products marketed by five different divisions uses a single decision engine to resolve the best thing to do for the customer.  Consequently, an RTIM approach enables a brand to act as one organization instead of many disparate companies with dozens of conflicting rule engines.

RTIM-based systems recall an individual’s history – instantaneously – each time a customer interacts, factor in new (contextual) information, and calculate the best action.  They execute real-time analytics to determine an individual’s propensity to respond to a candidate list of eligible offers, then consider customer value and the economic benefits of the offers before rendering a final decision.  Granted, they don’t have perfect knowledge of the person, yet just like a human brain, they remember past interactions and learn from them, and place a premium on the most up-to-date information.  They’re also agile enough to perform dynamic recalculations (in less than one second) to further improve the pending decision and enhance the relationship.  Through this two-way iterative approach, they essentially carry on a real-time conversation in a single session as shown in Figure 2.

Conversational Marketing

Figure 2: RTIM’s iterative two-way conversational approach

Regardless of the superficial popularity and obfuscation of the term AI, it’s incumbent on us as marketing professionals to inspect the value-added by the underlying CX technology.  Earlier this year, Forbes did just that, citing the Forrester Tech Radar on AI technologies, which found decision management as the top hot AI technology (Figure 3).[iii]   And decision management is the central capability embedded in RTIM systems.

With RTIM and its decision management, brands can personalize in real-time, improving on legacy and static Martech systems and processes, and reinvent how customers are treated.   Decision management enables companies to make analytically arbitrated evaluations during every customer contact, treating each person based on their constantly changing context, fluid needs, and demands for relevance and continuity.

In his article, What is RTIM, Barry Levine calls it “Right Now Contextual Marketing” and goes on to cite work by Forrester analysts Rob Bronson and Rusty Warner – who both helped establish RTIM market awareness that culminated in the RTIM Wave[iv].   Levine describes how RTIM enables marketers to perform “a continual negotiation — a kind of dance — happening in real-time between all available data and all available offers/actions.”

AI tech

Figure 3: Forrester AI Tech Radar

Sounds obvious, and aren’t brands already doing this?  Well, not really.  Consider that on many channels:

  • You see the exact same style screen and get messages identical to those of every other visitor.

 

  • You can’t set and store preferences or alerts for receiving communications.

 

  • Call center, branch, and store agents seem ill-equipped to set, store, and recall even the most basic details about you, like how many children or pets you have, and what their names are.

 

  • When you receive an email, it’s maybe one of a handful of different versions, so again, if the brand sending it has a list with millions of email addresses, you’re receiving the same content as thousands of others.

 

  • Advertisements stalk us for products we just bought or already own.

 

  • When you place a call into a service center for the 10th time in 2 weeks (and you’re feeling obligated to invite them to dinner because how much time you’re spending with them), it’s clear the vibe from the agent isn’t exactly a personal one.

 

  • When you start a process on one channel and bail out, and then later reconnect, you’re forced to repeat steps.

 

As marketing practitioners, we can do better.  And as with any road to improvement, it must start with an admission that issues exist and they are negatively impacting others.

 

Impactful Customer Engagement

Great customer engagement starts with customer understanding.  And tiny details matter – things that on the surface seem trivial, although later may turn into a customer testimonial like this:

“Yes, that pet store remembered me, thanked me for my business, remembered my dog’s name breed, and age (Sandy, our Westie, is 14 now). They seemed genuinely concerned for her health and status.  They provided me valuable insights into her dietary considerations, and their app sends me reminders for refills that I might otherwise miss.”

Unpack that and contemplate what it’s implying – a memorable personal experience with an aura of care, empathy, and value.  Remembering names, age, past purchase history, applicable products – admittedly is basic stuff.   But take that basic data, and in combination with other factors, use it to systematically treat each customer’s situation uniquely, and you’ll put information and technology to beneficial use.

So, forget whether this approach is using AI or not, and start worrying about whether what it’s doing makes common sense for your customers at the moment of interaction.  What matters is not whether you store these details, but whether the underlying technology mines that data, learns customer preferences – and with each transaction gets smarter about optimal timing and consumption patterns, and realizes when to trigger meaningful messages.

Frontline staff are already busy, and they’re increasingly asked to be super-human and to provide white-glove treatment at scale.   To do it, they’ll need support from technology that stores and surfaces critical insights at the right time, so they can buck the tendency to treat customers as averages – because, what you don’t want are segment-oriented attitudes like this:

  • Hey since winters coming, everyone needs a coat so we’re pushing winter parkas.
  • She’s one of my older fixed income retiree types – they all love that annuity product.
  • Millennials love iPhones, and tweens always buy that pink Otter case.

 

You want individual-oriented sentiments:

  • That was Jim and he’s 62, and you’d never believe that Jim loves ziplining, has a Shih Tzu, and listens to Dubstep late at night while he reads his email.

 

  • Rosemary says she’ll never retire. She loves her job, loves to day trade, reads email at lunch, and will likely work for her entire life.

 

  • Yes, Sara is a unique. She’s 21 and never responds to text messages, unless from close friends; she gets up early, reads email before work, and is into Hello Kitty, guinea pigs, and Thrash Metal.

 

Each one of your customers are unique people, not customer id’s in cluster codes.  Treat them as such.

Continuous CX Improvement

Back to our little story of the inverted last name.  You’re probably wondering, couldn’t that company have solved this problem without an RTIM system?  Maybe.  But outfits that work from a common customer database, understand the true meaning of “system of record” and synchronize data when its distributed, and use RTIM to operate from an organized set of rules and analytics and make the best possible decisions in the moment are much more likely to consistently get CX right, and to improve it – one person at a time.

[i] What Consumers Really Think About AI: A Global Study, https://www.pega.com/ai-survey, 2017

[ii] Forrester Total Economic Impact (TEI), https://www1.pega.com/insights/resources/forrester-total-economic-impact-tei-pega-marketing, 2016

[iii] Forbes, https://www.forbes.com/sites/gilpress/2017/01/23/top-10-hot-artificial-intelligence-ai-technologies/ , 2017

[iv] The Forrester Wave: Real-Time Interaction Management, https://www.forrester.com/report/The+Forrester+Wave+RealTime+Interaction+Management+Q2+2017/-/E-RES136189, Q2 2017,

“Thanks Marketing” Said No One Ever…Until Now

Thanks Marketing

The Formidable Years

As a child, Marketing was always loquacious, a doodler, and squirmy – voted “Most Likely to Be Told to Shut-Up,” she sharpened her latent skills in secret, occasionally posting her art on billboards, doing voice overs on an old cassette recorder, and even making a fluke cameo in a school play with a minor sing-song role.  But no one noticed.

Generously provided a diploma and sent on her way, after graduation she meandered through part-time jobs – waiting tables and moonlighting as a street artist selling a few pieces to magazine execs who used them in ads.  Family muttered at dinners and gigs were scarce.

Single with Jingles

Her first good-paying job was as a broadcaster on a local radio show.  She loved the writing and performing – being able to broadcast her message to a larger audience.  She came up with little ear-catching jingles that were memorable to some.  Still, she felt only “half successful” – never sure which half of her act worked.

Soon, she enrolled in night school, studied statistics (of all things), and brought to the station the idea of doing surveys to see which bits the audience liked.   It worked.  The station manager even coined a new term for the audience breakdown by age groups – calling them “segments.”  They crafted shows to cater to different segments that listened at various times.  The station quickly became tops in the market.  Yet, something was still missing – that direct connection with her listeners.  She’d do local events, having drinks with fans, but habitual cocktailing was exhausting and not scalable.

One night, at one of those station events, Marketing met Technology.  Tech gushed about emerging addressable channels, world-wide webs, email at scale, and mobility, making an impression on Marketing.  Although he was socially awkward, they hit it off, further confirming the Laws of Adjacency Physics that complementary opposites attract.  A few months later they married and the rest, as they say is Database Marketing, Content Marketing, and Martech history.  The they went on to have a few offspring… well over 5,000 in fact.

Unsung Heroes

Thanksgiving season calls on us to be thankful for things we otherwise take for granted. Marketing, eternally lambasted by non-believers as that group that creates logos and pretty slides, home of the artsy-fartsy types, creators of junk mail, and hosts of the two-drink minimum parties (they’re just jealous) – deserves better this year.

Like so many things, there’s good, bad, and ugly.  Surgeons are not all good.  Neither are marketers.  But how many times have you ever heard someone thank a great marketer.  Here’s an argument for why you should this year.

Court Proceedings

The collected evidence, submitted for your consideration:

Great marketing doesn’t happen by chance.  It takes devoted and creative people – brilliant, diverse, methodical and collaborative people, many with incredible range of art-science motion, who come together from all walks of life:  artists, sociologists, journalists, improv artists, movie producers, broadcasters, computer scientists, data scientists, quants, researchers, linguistics experts (and occasionally a trained marketer) ….and together they’ve brought us…

~ Humor and entertainment:

Exhibit #1: Arguably all starting with this Fedex ad in 1981, opening a new advertising chapter using laughter to engage us.

Exhibit #2: Anheuser Busch’s Bud Light TV ad oeuvre not only makes us laugh, as they pitch a watered-down lager, they also put commercials on center stage with edgy material constantly pushing marketing’s comedic and acceptable lingo boundaries.  Case in point…check out this one, taking the liberalization of profanity to new levels (up or down – depending on your view).

It’s strange nowadays to see any successful ad that doesn’t have some wit, jocularity, or chuckle-worthy aspect.   Admit it – half the reason you tune into the Super Bowl is for the commercials – and it’s not because you’re hoping to discover a more absorbent paper towel to wipe up your coveted light beer.

~ Amazingly eye-pleasing art and creativity in ad visuals – meaning we don’t hate the ads we view.

~ Innovative products, that we want, because someone cared to listen to us or went out of their way to push their corporate culture to innovate.  Such as:

  • Better ways to make reservations, vacation, get from point A to point B, shop, find a job, keep in touch with family and friends, and watch movies

~ A better more personalized experience with products and services…

  • You like personalized music consumption – thank marketing
  • Enjoy your video-on-demand with recommended content – thank marketing
  • Dig the nudges you get to exercise more, so you don’t waste away on a couch – thank marketing
  • Fancy discounts, rebates, and points for stuff you buy and use – thank marketing

Thanks Marketing….

Presently, I’ve got no glib prognostications, no “Five Marketing Best Practices,” and no “2017’s most disruptive Martech startups” (maybe next post).

Rather, today I’m pausing to admire how far marketing’s come, how much smarter she is, how attractive she’s become (she put blood, sweat, and tears into that beach body), and how proud we should be of her when she does excellent work.

So, this thanksgiving season, go out of you way to thank someone you probably have never thanked before.  Thank a great marketer.  I will.

AI-Based Promotions – Welcome to the Creative Machine

Mad Men & AI - Promotions

Source: Exploration of Saturn’s Moon’s by Kacper H. Kiec

As a Marketer, when you craft successful promotions, you’re especially proud of their creative aspects.  And it’s understandable because creativity seems our last bastion against the perceived onslaught of machine domination, so we fiercely defend that turf.  The tenuous argument being, “robots are no match for human creativity!”  This viewpoint, besides inviting a cage match between humans and machines, also smacks of keeping math and machines out of any solution, lest boring and stiff digital influences ruin the warmth of our marketing art and experience show.   However, for all the aspiring “Michelangelos” out there, it’s time to rethink this, lest you find yourself selling one-off ad creatives at street-side craft shows.

A promotion is fundamentally your story; your pitch in a nutshell – delivered through a channel to an audience of one – assuming it gets through.  And the fact that it oozes creativity and garners the right emotional response can be critically important to a customer’s reaction.  But what is its true worth? Compared to what?  Is there a chance that for most eyes it will succumb to fading into the backdrop with all the other one-size for all advertising clutter?

With a fickle, time-pressed consumer, your promotion has – at best – a fleeting chance to capture an individual’s attention, make an emotional connection, explain a deal, plus convince that person they should care.  On average, you’ll get about five seconds to grab interest; succeed and you may earn another five to emotionally connect, and so on.   In most cases, no matter the channel, you’ll be afforded about thirty seconds, a few minutes tops – to deliver the goods.

Given this, every top-line pitch needs a “No Boring Zone” mentality with visually appealing facets – nonetheless cookie cutter theatrics alone won’t win the day.  You need to get serious about how to use math along with machines (artificial intelligence) to radically fine-tune sales messages and custom-fit them for individuals – in other words, personalize them.  To do that requires scaling up a promotion production and testing factory.

A canvasing of the available marketing automation tooling finds that very few help solve for the bona fide business problem of creating and testing a wide variety of promotions across a plethora of channels.  In fact, most simply give you a facility to manually key enter the metadata for each version, creating them from scratch – calling this Offer Management or an Offer Library.  The problem is as an artisan, you basically run out of material and time in a futile attempt to manufacture a decent collection for the library.  Thus, the conundrum –  to cut through the noise, and find the right version that resonates for each nuanced individual, you must create and test thousands of versions, but old-fashioned human means alone cannot keep up.  And if you muster the means to produce numerous alternatives, it’s equally difficult to monitor their effectiveness and pick the winners.  You need tools that automate mass testing and response tracking, and math to tell you exactly what’s working and why, yet few such tools exist.

Everyone talks about knowing customers better; using that knowledge to personalize.  It’s an admirable aspiration.  However, commendable goals don’t necessarily translate to better outcomes. In this case, it doesn’t matter how well you know customers if you can’t hyper-customize content, messages, and other creatives – and produce tailor-made promotions that really fit what customers expect in the moment of interaction.

You won’t entice my response by extrapolating from a few of my preferences and placing me into some huge segment.   All the “Hey, Vince wouldn’t you love to travel, drink exceptional wine, and eat at these fine places” in the world won’t matter if I don’t get something that is fabulously timed, speaks directly to me and visually jumps out, elicits an emotional connection, stays engaging, and commands attention due to its specific relevance – in other words the message needs to be personalized to my promotional preferences and exact product needs.  In fact, the promotion itself (in its entirety) must be an enjoyable experience.

Moreover, the same goes for financial services, transportation, telecommunications, insurance, and healthcare promotions.

Marketing’s 4th Dimension – Promotions

Marketing technologists (martech types), and the automation applications available to them, tend to focus mainly on these big three dimensions that drive response rates:

~Data:  Stockpiling and codifying key customer data

~Behavioral Analytics:  Gleaning intent and preference, scoring response propensity, and segmenting

~Channel & Time Optimization:  Delivering messages through the right medium at the right time

 

Space-time warp

All of these dimensions are important pieces to solving overall marketing optimization.  However, without the ability to generate thousands, if not millions of promotions (with varying copy options, incentive levels, calls to action, creative versions and such), about one third of what drives response and conversion is woefully underserved in assuring messages are noticed, relevant, and responded to.

Presently, this 4th dimension, promotions, has received practically no attention from marketing automation technology and AI – and instead marketers merely accept that snail-like non-scalable A/B testing is the best way.  The fact is, even with armies of humans crafting variations and A/B testing, the number of manageable versions you can juggle will be in the hundreds at best – when what you need to compete is the ability to create & test thousands of these.

Ok, not convinced yet?  Then perhaps a little math is in order (as he locks the classroom door and places nails…I mean chalk… on chalkboard):

Problem: Calculate the number of email message variations.

Email promotion components:

  • 100 products to sell
  • 10 images per product
  • 10 subject lines
  • 100 email templates (to test fonts, color, container locations, call-to-action button)

Answer:

100 x 10 x 10 x 100 = 1 million promotional variations

News Flash!  You have no chance with just brute human force to create and test this many variations.

 

Lucy & Ethel couldn’t keep up – and neither can you

chocolate factory

In this famous Chocolate scene from I Love Lucy, an illustrious TV series from the 1950’s, Lucy & Ethel prove that manual human labor, no matter how clever, can’t keep up – quickly becoming the bottleneck in an otherwise automated system.

Given this seventy year old lesson, why do we think that humans alone can drum up and test an acceptable level of promotional assortment?  They can’t.  But still, stubbornly, we hand-crank creative versions, accepting less variation.  Yet the better way is to let people fashion the promotional raw materials as re-usable creative elements, combined with letting artificial intelligence test the combinations – surfacing the winners – automating and individualizing the wrapping of your chocolates.

Marketers, as well as many businesspeople, are warming up to the current power and future potential of AI and what’s at its core – Data Science.  In fact, in a recent study by the Boston Consulting Group of more than 3000 executives, 61% of those surveyed see developing a strategy for AI as urgent[i].  And in this case, machines and math can assist.  As a marketer, you already know the power of AI and machine learning.  It’s what helps you calculate customer value, score a customer’s propensity to respond to a given incentive for an applicable product, and even predict when to present the offer.  And to get started, you don’t need a million options.  Instead, use human judgement to field a reasonable set of challenger creative components (perhaps a dozen of each), then use AI to perform champion –  challenger tests on the combinations.

Exactly how will AI and machine learning help generate and test copious quantities of creative offer variations?  Enter natural language generation and automated (multivariate) testing.

Natural Language Generation (NLG), Visuals, and Templates

In our email example, we discussed written variants (e.g., different subject lines), various visuals (fonts, graphics), and template alternatives (where to place the copy and graphics).  Let’s break these 3 elements down:

Natural Language Generation (NLG)

Computers can generate language.  In fact, they’ve been doing so for over 30 years.  Today, they can even take into consideration emotional aspects. In 2015, Gartner went on record forecasting that by 2018, twenty percent of all business content would be computer generated[ii].  Although aggressive at the time, and unlikely now, it still highlights the potential of NLG, and progress nonetheless has still been impressive.

For marketers, there’s already good examples of how NLG is used today, and can be helpful in solving for the promotional version dilemma.

For example, Persado Go uses NLG to generate variations of email subject lines, and then records performance broken down by specific elements such as emotions, formatting, descriptions, and so forth.  Candidate subject lines are generated from a huge database, and a sixteen-version test is setup.

Visuals

Visuals are combinations of text aspects (font type, styles, size), color, video, pictures, and graphics. A picture is not only worth a thousand words it’s also capable of sparking an emotional connection.  And although AI is encroaching on even this human endeavor, for now people (assisted by AI) are still superior to pure machine generated creative assets.

Templates

Templates drive how you both organize and showcase content.  For an email, it controls where recommended content will display, where a call-to-action button will be placed, what font will be used for written copy, and so on.

As with any element, a wide assortment of templates should be tested, each with innovative ideas about where containers should be located, and which font and color scheme will work best.

Now that you have all the ingredients, just mix and serve.  Except how will I know which versions work best in which circumstances?

Multivariate Testing & Adaptive Machine Learning

Enter multivariate testing – which sounds complex and geeky – but it’s not that difficult (although admittedly the term is geeky).  A multivariate test is simply a series of A/B tests, done simultaneously – which means you won’t spend months testing; instead doing one test (testing a string of modifications all at once) in as little as a few days or weeks.

And using an adaptive machine learning approach, such as this one available from Pegasystems (in full disclosure I do work for Pegasystems), the whole testing process can essentially run automatically, as the machine (the math algorithm) determines the eventual winners by ranking them higher as the digital response evidence pours in on which promotional variant get the best take-rate in which situations.

You and The Machine will go far

Too often we fall victim to pitting ourselves against machines, rather than exploring a symbiotic relationship with them – like the one we have with our smartphones.  As marketers, we need to think the same way.  AI can assist us, and we must embrace that.  Exploit technology for what it does well, and weave that into your promotional factory, leveraging its ability to scale things to new levels never imagined with manual methods.

[i] S. Ransbotham, D. Kiron, P. Gerbert, and M. Reeves, “Reshaping Business With Artificial Intelligence,” MIT Sloan Management Review and The Boston Consulting Group, September 2017.

[ii]Gartner,  http://www.gartner.com/smarterwithgartner/gartner-predicts-our-digital-future/, 2015

What it Takes to be a CX Transformer

Thirty years ago, when I unpacked my first computer, a Commodore 64, rigged it to my 13-inch tube TV, and wrote my first program, the process of creating a digital experience hooked me.  That I could design and assemble mere bits and bytes, package them up into an asset, refine it, and eventually share it for the benefit of others – for entertainment or problem solving – just enthralled me.

CX Transformer

With time and market efficiency sorting who gets paid to do what, I altered my path away from programming and toward design and consulting, leaving the coding and compiling jobs to those more talented than me in that trade. That wonderful feeling of accomplishment, however, never left me and still drives me today.  Whether it’s creating visual concepts, designing software, or producing media, creating a re-usable asset with experiential worth (striving to be a CX transformer), for me, is a universal and time-tested motivator.

Experiential assets, originally made from scratch, must evolve to the liking of their benefactors.  They invariably play a role in nearly every commercial experience.  For example, a vehicle manufacturer produces a physical product, but the agency who markets it as well as the dealer who sells and services it – all add crucial elements into the customer’s journey of shopping for, buying, and owning that vehicle – all contributing to (or subtracting from) accumulated impressions of overall worth and value.

Organizations are either born with this mentality, where it’s baked into the fabric at every level and function of the organization, or they must transform.  Startups who don’t adopt this mentality burn through money and soon dissolve.  Legacy firms are faced with odds not unlike that of a recovering addict.  Most hit bottom, before they realize the extent of their problem, and by then it’s often too late.  Few are afforded the chance to recover and most who try will regress.  In fact, a recent Forrester study [i]indicated as many as 77% of those who embark on CX transformation will fall short.

With all this buzz, don’t we already get great CX?

The short answer is, not really.  According to a global survey [ii]of 7000 consumers, 89% “think brands need to work harder to create a seamless experience for customers.”   There’s lots of talking about seamless and personalized experiences, and less walking the walk.  And consumers continue to report a deficit of it, as evidenced in an Infosys survey [iii]indicating that 73% have never experienced online personalization.  Here’s the reason:  Many of us, and the firms we work for, aren’t practicing what we preach.

Regardless of what you do, you’re in the business of creating customer experiences.  Whether in sales, marketing, service, or operations; whether you set vision, do design work, code, implement, consult, or the like, your ultimate mission is creating something that someone else appreciates and finds value in – because it makes their life better.  It improves their experience.  If you can’t tie what you do and why you do it back to that, your mission is misdirected.

The only reason customers buy, use, or recommend products or services is because they experience value.  So, if you simply blabber about CX but don’t improve it, you’re subtracting value, like in figure 1:

CX Talk vs Walk

Figure 1: All Talk Equals Value-Subtracted from CX

Everyone plays a role in experience management.  For example:

  • If you’re a banker, during any interaction, clients are judging each aspect of your services. When they point out friction, dissatisfaction, annoyances, frustrations – they aren’t being pests – they’re handing you gold.
  • If you manage a telco’s call center, though one step removed from direct feedback, front-line agents will hand you that gold. Will you ignore it, or will you investigate, catalog it, document it, and act on it?
  • If you design software used by that banker or agent, you’re instrumental to how the total experience comes off when moments of customer truth occur. Software augments customer facing CX delivery, either enhancing it or contributing to its malfunctions.

Software and AI technologies have already changed our lives, and continue to transform how we experience life.  From when we wake to the minute we doze off, the way we interact with the world, for business and pleasure, is vastly different now from the day I cracked open that Commodore box.

Data is abundant and the right intelligence in software is available. Yet how both are captured and deployed is what spells the difference between memorable moments versus forgettable incidents.  Dated advice, cloaked as sage recommendations, abounds on what data to tap and which AI technologies to trust.

Beware of the CRM “Catchers in the Rye” who have a vested interest in selling old software disguised as AI and one-to-one personalization, spruced up with fancy new names like Customer Data Platforms, but stuck in a forgone era. Peel these back and see if they rest on an old batch and blast architectures with no real proven use cases for predictive analytics, built essentially for pushing emails to segments.  You’re sure to hit a wall with these, since they were never built to handle real-time, analytics based one-to-one contextual engagements. If you’re interested, I cover this topic in more depth in this article.

Or worse still, beware the do-it-yourself CRM & AI pushers, selling piles of new programming gadgets with exotic names such as Python, Storm, Spark, and Kafka, but missing the warning label that says, “Much assembly required.”

CX Transformation Process

The transformation process, contrary to overhyped tales of sudden disruption, is mostly evolutionary.  It involves creative minds with an unwavering and relentless obsession to improve experiences – as measured by customers.  But today you must do everything you can to go through this process fast.

Iteration (figuring out how to improve) means executing various steps in succession – speedily and repeatedly to learn fast.  It also takes a flexible methodology and tools supporting rapid revisions.  Each time Thomas Edison’s filament didn’t work, he wasn’t failing, he was learning.  When asked about racking up so many failures, Edison replied, “I have not failed 10,000 times. I have not failed once. I have succeeded in proving that those 10,000 ways will not work. When I have eliminated the ways that will not work, I will find the way that will work.”

Be unyielding in finding gaps, filling needs, overcoming shortcoming, and plugging them with an improved asset.  Find the simple stuff, that exacerbates customers, but is easily addressed.  Do ten thousand little things right – and fast.

To succeed, you’ll need to be well-equipped with the right CX transformation methodology and technology. Speed to market and economies of scale matter now more than ever.  It takes steadfast customer centric vision, modern tooling, and an agile methodology.  Let’s explore the four key steps shown in figure 2.

CX Transformer

Figure 2: Depicting the CX transformational process steps

 

 

CX Transformer Step #1: Conceive Innovation

As you come up with a concept, consider the objectives…. making things better, faster, cheaper.  Ideally, you’ll eventually address all these, but practically you’ll need focus. Will the proposed innovation fix something that is terribly broken?  Better yet, will it preemptively address a shortcoming.  Often, fixing inadequacies is simple, yet the consequences of not fixing them are huge.

To find opportunities for CX innovations, use analytic heatmaps fed by behavior data on websites and mobile devices to zero in on where customers struggle or bail out.  Mine reviews, comments, call logs to find repeating themes.

Here’s an example I heard from a person I sat next to on a flight.  He had booked a trip to Dubai, but the travel service never proactively alerted him that travel to UAE requires a passport that doesn’t expire in less than six months.  On his departure day, he couldn’t check in, and subsequently was on the phone for hours, working the problem and seeking amends for this horrible experience.  The root cause was recorded in logs. The fix (innovation if you will) was rudimentary and excruciatingly easy.

“If customer books trip to country X, and passport expiration date is Y, alert customer about passport rule.”

In this case, the customer placed a gold nugget into the lap of the brand, begging them to fix it for future customers.  Will they?  Only if they’ve institutionalized collecting hiccups like this, and weaving them into the innovation and improvement process.

Think of innovations in sets.  Will the CX innovation set be press-worthy; will the total experience be unique and better?  Take the innovation set and break it down into manageable chunks. To improve service usability, for example, consider whether the specific design is elegant, visually appealing, modern, stylistic, easily navigated, intuitive, and so forth.  Remember, even when just creating a form, such as an insurance policy application, all the above matters in CX.

Spend three times as much effort on design versus construction.  If service improvement is your aim, pick (as your innovation set) a critical customer journey that cuts across various functions and channels, and obsess with its design. While iterating on the design, always apply a range of customer sniff tests tied to customer personas.  How would customer X use this?  How would customer Y perceive this?

Just as incentive drives employee behavior, it drives customer behavior.  Customers are motivated by the value they both perceive and achieve from using your products and services, regardless of the organizational excuses they encounter along the way.

CX Transformer Step #2: Judge Harshly

Critique innovations, not just with self-criticism, but with the varied feedback of others. Compare to market alternatives and what big competitors are doing and what customers complain about.  Once again, view the current state of the experience through customer eyes.  Clients not only measure success, they also give clues about required innovations.  If an asset works they use it, open it, share it, like it, and buy it.

Watch exactly how customers use the innovation.  Designers call this usability testing, and too often, it’s shortcut out of the development process in the name of speed.  Watch how customers interact, how they shop, how they decide, whom they consult with, and why they buy.  Look for where they struggle, the questions they ask, why they need help, and ask what went wrong. Then go back to the drawing board to create a new experience, craft a new email, create a form, redesign a web page, or work on ideas to improve how agents engage with customers.

Use a basic four quadrant Risk / Reward matrix, as shown in figure 3, to prioritize a backlog of CX improvement opportunities.

Value Matrix

Figure 3: Risk (Effort) / Reward (Value) matrix used to prioritize innovation ideas

Don’t make your goal mimicking competitors, but instead to gauge your inferiorities to them, study their winning ways, and chart your course –  but dare to be different – then test and learn.  Compare your asset to others available in market.  This guides, both in terms of whether you’re behind, but also what hasn’t been done – thus presenting opportunities to do something new, something unique.

Pattern yourself on proven winners, not just in your industry, but also in very different ones.  Why?  Because that’s where unique ideas come from – not from copying your competitors, but from proxies that when applied to a different problem become a new idea.

For instance, to transform the branch experience for its customers, Capital One recently introduced café style locations, drawing on a combination of Starbucks and Apple store concepts.

CX Transformer Step #3: Apply a Value Test

Determine whether your innovations improve experience. To do this, perform behavior tests and not just surveys.  People don’t always do what they say they’ll do.  Test your innovation by getting real customers to use it in production pilots, and then measure whether, for instance, the task was accomplished faster.

Getting there may not be easy, cheap, or fast, but if your product isn’t passing these tests, you haven’t improved your customer’s experience.  Each innovation should pass at least one of these tests, and collectively overtime, it must pass all three.

At this stage, the test is if your customers are buying or using your asset.  If they see value, they’ll do these things, so measure for it, and use this as your ultimate yardstick.

CX Transformer Step #4: Analyze Objectively

Once you release your concept into the memorialized world of production, objectively (and recurrently) evaluate its worth.  What works today may not work tomorrow. In addition to pure customer feedback, consider getting an objective third party to scrutinize it, since creators as well as customers have blind spots and biased views.

For all its advances, and there are many, CX today – when analyzed objectively – is still mostly choppy, dysfunctional, too slow, and places too much burden on the customer.  Admittedly, some industries (such as banking and telecommunications) have made more progress than others, yet largely, especially for massive enterprises, CX is frankly still very siloed.

Firms spend millions of dollars on data collection, design thinking, journey mapping, voice of customer, CRM systems, employee training, and so on.  Yet when these efforts are not coordinated around a systematic process, data, technology, and culture – hyper coordinated and committed to improving CX –most of that investment will be for naught.

It’s human nature to either ignore feedback or want to defend your baby’s looks, and if you’re busy defending versus fixing simple things, CX won’t improve much.  It’s also human nature to pass the buck – meaning no one will take responsibility, because even though at our core we’re pack animals, it’s ironically not in our nature to communicate issues across organizational pillars.

CX transformation doesn’t come easy and it doesn’t come cheap, and rarely comes fast.  But for those who listen to and watch customers, fix ten thousand small things fast, live by the adage innovate or die, and cross-functionally collaborate on behalf of better customer experience, the rewards will be plenty.

[i] Forrester, http://www.datastax.com/wp-content/uploads/resources/whitepaper/Forrester-CX-TLP_DataStax.pdf, April 2017

[ii] Zendesk,  http://d16cvnquvjw7pr.cloudfront.net/resources/whitepapers/Omnichannel-Customer-Service-Gap.pdf, November 2013

[iii] Infosys, https://www.infosys.com/newsroom/press-releases/Documents/genome-research-report.pdf, 2013